
CS6200
Information Retrieval

David Smith
College of Computer and Information

Science
Northeastern University

Indexing Process

Web Crawler

• Finds and downloads web pages automatically
– provides the collection for searching

• Web is huge and constantly growing
• Web is not under the control of search engine

providers
• Web pages are constantly changing
• Crawlers also used for other types of data

Retrieving Web Pages

• Every page has a unique uniform resource
locator (URL)

• Web pages are stored on web servers that use
HTTP to exchange information with client
software

• e.g.,

Retrieving Web Pages

• Web crawler client program connects to a
domain name system (DNS) server

• DNS server translates the hostname into an
internet protocol (IP) address

• Crawler then attempts to connect to server host
using specific port

• After connection, crawler sends an HTTP
request to the web server to request a page
– usually a GET request

Crawling the Web

Web Crawler
• Starts with a set of seeds, which are a set of

URLs given to it as parameters
• Seeds are added to a URL request queue
• Crawler starts fetching pages from the request

queue
• Downloaded pages are parsed to find link tags

that might contain other useful URLs to fetch
• New URLs added to the crawler’s request

queue, or frontier
• Continue until no more new URLs or disk full

Web Crawling

• Web crawlers spend a lot of time waiting for
responses to requests

• To reduce this inefficiency, web crawlers use
threads and fetch hundreds of pages at once

• Crawlers could potentially flood sites with
requests for pages

• To avoid this problem, web crawlers use
politeness policies
– e.g., delay between requests to same web server

Controlling Crawling
• Even crawling a site slowly will anger some

web server administrators, who object to any
copying of their data

• Robots.txt file can be used to control crawlers

Simple Crawler Thread

Freshness

• Web pages are constantly being added, deleted,
and modified

• Web crawler must continually revisit pages it
has already crawled to see if they have
changed in order to maintain the freshness of
the document collection
– stale copies no longer reflect the real contents of

the web pages

Freshness
• HTTP protocol has a special request type

called HEAD that makes it easy to check for
page changes
– returns information about page, not page itself

Freshness
• Not possible to constantly check all pages

– must check important pages and pages that change
frequently

• Freshness is the proportion of pages that are
fresh

• Optimizing for this metric can lead to bad
decisions, such as not crawling popular sites

• Age is a better metric

Freshness vs. Age

Age

• Expected age of a page t days after it was last
crawled:

• Web page updates follow the Poisson
distribution on average
– time until the next update is governed by an

exponential distribution

Age
• Older a page gets, the more it costs not to

crawl it
– e.g., expected age with mean change frequency λ

= 1/7 (one change per week)

Focused Crawling

• Attempts to download only those pages that are
about a particular topic
– used by vertical search applications

• Rely on the fact that pages about a topic tend to
have links to other pages on the same topic
– popular pages for a topic are typically used as

seeds
• Crawler uses text classifier to decide whether a

page is on topic

Deep Web

• Sites that are difficult for a crawler to find are
collectively referred to as the deep (or hidden)
Web
– much larger than conventional Web

• Three broad categories:
– private sites

• no incoming links, or may require log in with a valid
account

– form results
• sites that can be reached only after entering some data

into a form
– scripted pages

• pages that use JavaScript, Flash, or another client-side

Sitemaps

• Sitemaps contain lists of URLs and data about
those URLs, such as modification time and
modification frequency

• Generated by web server administrators
• Tells crawler about pages it might not

otherwise find
• Gives crawler a hint about when to check a

page for changes

Sitemap Example

Distributed Crawling

• Three reasons to use multiple computers for
crawling
– Helps to put the crawler closer to the sites it crawls
– Reduces the number of sites the crawler has to

remember
– Reduces computing resources required

• Distributed crawler uses a hash function to
assign URLs to crawling computers
– hash function should be computed on the host part

of each URL

Desktop Crawls

• Used for desktop search and enterprise search
• Differences to web crawling:

– Much easier to find the data
– Responding quickly to updates is more important
– Must be conservative in terms of disk and CPU

usage
– Many different document formats
– Data privacy very important

Document Feeds

• Many documents are published
– created at a fixed time and rarely updated again
– e.g., news articles, blog posts, press releases, email

• Published documents from a single source can
be ordered in a sequence called a document
feed
– new documents found by examining the end of the

feed

Document Feeds

• Two types:
– A push feed alerts the subscriber to new documents
– A pull feed requires the subscriber to check

periodically for new documents
• Most common format for pull feeds is called

RSS
– Really Simple Syndication, RDF Site Summary,

Rich Site Summary, or ...

RSS Example

RSS Example

RSS

• ttl tag (time to live)
– amount of time (in minutes) contents should be

cached
• RSS feeds are accessed like web pages

– using HTTP GET requests to web servers that host
them

• Easy for crawlers to parse
• Easy to find new information

Conversion
• Text is stored in hundreds of incompatible file

formats
– e.g., raw text, RTF, HTML, XML, Microsoft

Word, ODF, PDF
• Other types of files also important

– e.g., PowerPoint, Excel
• Typically use a conversion tool

– converts the document content into a tagged text
format such as HTML or XML

– retains some of the important formatting
information

Character Encoding

• A character encoding is a mapping between
bits and glyphs
– i.e., getting from bits in a file to characters on a

screen
– Can be a major source of incompatibility

• ASCII is basic character encoding scheme for
English
– encodes 128 letters, numbers, special characters,

and control characters in 7 bits, extended with an
extra bit for storage in bytes

Character Encoding
• Other languages can have many more glyphs

– e.g., Chinese has more than 40,000 characters,
with over 3,000 in common use

• Many languages have multiple encoding
schemes
– e.g., CJK (Chinese-Japanese-Korean) family of

East Asian languages, Hindi, Arabic
– must specify encoding
– can’t have multiple languages in one file

• Unicode developed to address encoding
problems

Unicode

• Single mapping from numbers to glyphs that
attempts to include all glyphs in common use
in all known languages

• Unicode is a mapping between numbers and
glyphs
– does not uniquely specify bits to glyph mapping!
– e.g., UTF-8, UTF-16, UTF-32

Unicode

• Proliferation of encodings comes from a need
for compatibility and to save space
– UTF-8 uses one byte for English (ASCII), as many

as 4 bytes for some traditional Chinese characters
– variable length encoding, more difficult to do

string operations
– UTF-32 uses 4 bytes for every character

• Many applications use UTF-32 for internal text
encoding (fast random lookup) and UTF-8 for
disk storage (less space)

UTF-8

– e.g., Greek letter pi (π) is Unicode symbol number
960

– In binary, 00000011 11000000 (3C0 in
hexadecimal)

– Final encoding is 11001111 10000000 (CF80 in
hexadecimal)

Storing the Documents

• Many reasons to store converted document text
– saves crawling time when page is not updated
– provides efficient access to text for snippet

generation, information extraction, etc.
• Database systems can provide document

storage for some applications
– web search engines use customized document

storage systems

Storing the Documents

• Requirements for document storage system:
– Random access

• request the content of a document based on its URL
• hash function based on URL is typical

– Compression and large files
• reducing storage requirements and efficient access
• Many documents per file

– Update
• handling large volumes of new and modified documents
• adding new anchor text

Large Files

• Store many documents in large files, rather
than each document in a file
– avoids overhead in opening and closing files
– reduces seek time relative to read time

• Compound documents formats
– used to store multiple documents in a file
– e.g., TREC Web

TREC Web Format

Compression

• Text is highly redundant (or predictable)
• Compression techniques exploit this

redundancy to make files smaller without
losing any of the content

• Compression of indexes covered later
• Popular algorithms can compress HTML and

XML text by 80%
– e.g., DEFLATE (zip, gzip) and LZW (UNIX

compress, PDF)
– may compress large files in blocks to make access

faster

BigTable
• Google’s document storage system

– Customized for storing, finding, and updating web
pages

– Handles large collection sizes using inexpensive
computers

BigTable
• No query language, no complex queries to

optimize
• Only row-level transactions
• Tablets are stored in a replicated file system

that is accessible by all BigTable servers
• Any changes to a BigTable tablet are recorded

to a transaction log, which is also stored in a
shared file system

• If any tablet server crashes, another server can
immediately read the tablet data and
transaction log from the file system and take
over

BigTable

• Logically organized into rows
• A row stores data for a single web page

• Combination of a row key, a column key, and a

timestamp point to a single cell in the row

BigTable

• BigTable can have a huge number of columns
per row
– all rows have the same column groups
– not all rows have the same columns
– important for reducing disk reads to access

document data
• Rows are partitioned into tablets based on their

row keys
– simplifies determining which server is appropriate

Detecting Duplicates

• Duplicate and near-duplicate documents occur
in many situations
– Copies, versions, plagiarism, spam, mirror sites
– 30% of the web pages in a large crawl are exact or

near duplicates of pages in the other 70%
• Duplicates consume significant resources

during crawling, indexing, and search
– Little value to most users

Duplicate Detection
• Exact duplicate detection is relatively easy
• Checksum techniques

– A checksum is a value that is computed based on
the content of the document

• e.g., sum of the bytes in the document file

– Possible for files with different text to have same
checksum

• Functions such as a cyclic redundancy check
(CRC), have been developed that consider the
positions of the bytes

Near-Duplicate Detection
• More challenging task, and harder to define

– Are web pages with same text context but different
advertising or format near-duplicates?

• A near-duplicate document is defined using a
threshold value for some similarity measure
between pairs of documents
– e.g., document D1 is a near-duplicate of document

D2 if more than 90% of the words in the
documents are the same

Near-Duplicate Detection

• Search:
– find near-duplicates of a document D
– O(N) comparisons required

• Discovery:
– find all pairs of near-duplicate documents in the

collection
– O(N2) comparisons

• IR techniques are effective for search scenario
• For discovery, other techniques used to

generate compact representations

Fingerprints

Fingerprint Example

Simhash
• Similarity comparisons using word-based

representations more effective at finding near-
duplicates
– Problem is efficiency

• Simhash combines the advantages of the word-
based similarity measures with the efficiency
of fingerprints based on hashing

• Similarity of two pages as measured by the
cosine correlation measure is proportional to
the number of bits that are the same in the
simhash fingerprints
– Other Locality Sensitive Hashing schemes for

Simhash

Simhash Example

Removing Noise

• Many web pages contain text, links, and
pictures that are not directly related to the main
content of the page

• This additional material is mostly noise that
could negatively affect the ranking of the page

• Techniques have been developed to detect the
content blocks in a web page
– Non-content material is either ignored or reduced

in importance in the indexing process

Noise Example

Finding Content Blocks
• Cumulative distribution of tags in the example

web page

– Main text content of the page corresponds to the
“plateau” in the middle of the distribution

Finding Content Blocks
• Represent a web page as a sequence of bits,

where bn = 1 indicates that the nth token is a
tag

• Optimization problem where we find values of
i and j to maximize both the number of tags
below i and above j and the number of non-tag
tokens between i and j

• i.e., maximize

Finding Content Blocks
• Other approaches

use DOM structure
and visual (layout)
features

